Chapter 2 Polynomials class9 Practice Questions Paper Important Identities : - 1. ( x + y )2 = x2 + 2xy +y2 2. ( x – y)2 = x2 – 2xy + y2 3. (x + y)(x – y) = x2 – y2 4. (x + a)(x + b) = x2 +(a + b)x + ab 5. (x + y)3 = x3 + 3x2y + 3xy2 + y3 = x3 + y3 +3xy(x +y) 6. (x - y)3 = x3 - 3x2y + 3xy2 - y3 = x3+ y3 -3xy(x -y) 7. (x + y + z)2 = x2 + y2 + z2 + 2xy + 2yz + 2zx 8. x3 + y3 = (x + y)(x2 – xy + y2) x3 - y3 = (x - y)(x2 + xy + y2) 9. x3 + y3 + z3 – 3xyz = (x + y + z)(x2 + y2 + z2 – xy – yz – zx) 10. If x + y + z = 0 , then x3 + y3 + z3 = 3xyz 1. Classify the following as monomials, binomials and trinomials : (a)x3 b) 2y2 – 4y + 3 c) t2 – 4 d) √2 e) x3 + 4x2 + 5x f) u7 + u2 – 4. 2. Write the coefficients of x2 in each of the following : a) 3x^2 – 4y b) x + x^2 + 7y c) 3x + 4y – 5z d) x^2 + 2xy + 3y^2 3. Write the degree each of the following : a) 5x^3 + 4x^2 + 7x b) 4 – y2 c) 5t – 3 4. Classify the following as linear, quadratic and cubic polynomials : a) x^2 + x b) x – x^3 c) y + y^2 + 4 d) 1 + x e) 3t f) r^2 5. Find the value of the polynomial 5x – 4x^2 + 3 at : a) x = 0 b) x = - 1 c) x = 2 6. Find the value of each of the following polynomials at indicated value of variables : a) p(x) = 5x^2 – 3x + 7 at x = 1 b) p(y) = 3y^3 – 4y + 4 at y = 2 c) p(t) = 4t^4 + 5y^3 – t^2 + 6 at t = a 7. Check whether – 2 and 2 are zeroes of the polynomial x + 2 . 8. Find the zero of the polynomial p(x) = 2x + 1. 9. Verify whether 2 and - 2 are zero of the polynomial x^2 – 4 . 10. Verify whether 2 and 0 are zero of the polynomial x^2 – 2x 11. Find the value of the following : a) (3x2 – 3x + 1)(x – 1) when x = 3 b) (3x2 – 1)(4x3 – 4x – 3) when x = - 1. 12. Evaluate the following for given values of the variables : a) x4 – x3 + x2 – x + 1 for x = 2 b) x3 + x2 + x + 1 for x = - 1. 13. Find the remainder and quotient in each of the following a) Divide x4 – 1 by x – 1 . b) Divide x3 – 3x2 + 5x – 8 by x – 2. 14. Find the remainder when 4x3 – 3x2 + 2x – 4 is divided by : a) x – 1 b) x – 2 c) x + 1 d) x – 4 e) x + 2 15. Using remainder theorem, find the remainder : a) Divide x6 – 1 by x – 1 b) Divide x3 + 1 by x + 1 . 16. Find the remainder when x4 + x3 – 2x2 + x + 1 is divided by x + 1. 17. Find the remainder when the polynomial p(x) = x3 + 2x2 – 2x + 1 is divided by x + 3 18. Find the remainder when the polynomial p(x) = x2 +4 x + 2 is divided by x + 2. 19. Find the remainder when 3x4 - x3 + 3x2 - 4 x + 1 is divided by x – 3. 20. If x – 2 is a factor of each of the following polynomials, then find the value of a in each case : a) x2 – 3x + 5a b) x3 – 2ax2 + ax – 1 c) x5 – 3x4 – ax3 + 3ax2 + 2ax + 4. 21. Factorise : 6x2 + 17x + 5 22. Factorise : x3 – 23x2 + 142x – 120 . 23. Using a suitable identity, find the following products : a) (x + 5)(x – 3) b) (4x + 3)(4x + 5) c) (x + y)(x + y) e) (3x + 4)(3x + 7) f) (5a + 3)(5a + 2) 24. Expand using suitable formula : a) (2a + 3)2 b) (3a – 5)2 25. Factorise the following : a) x2 + 6x + 9 b) 24x2 – 41x + 12 c) x2 – x – 6 d) 16x2 + 8x + 1 e) 9x2 – 16y2 f) 4x3 – 4x g) (x + 1)2 – (x –1)2 h) 9x2 + 6x + 1 – 25y2 i) 25x2 – 10x + 1 – 36y2 j) x3 + x – 3x2 – 3 k) x2 + y – xy – x l) 3ax – 6ay – 8by + 4bx m) xy – ab + bx – ay n) 1 – x2 – y2 – 2xy o) 8 – 4a – 2a3 + a4 p) a2 + b2 + 2ab + 2bc + 2ca q) x3 + 64 r) 25x2 – 10x + 1 s) x2 – 11x – 42 t) 12x2 – 10x + 2 v) a4 – a w) x3 – 125 x)27x3y3 – 8z3 y) 8x3 – (2x – y)3 z) (a + b)3 – (a – b)3 26. factorise the following : i) 4(x – y)2 – 12(x – y)(x + y) + 9(x + y)2 ii) 3(x + y)2 – 5(x + y ) + 2 iii) 12(x2 + 7x)2 – 8(x2 + 7x)(2x – 1) – 15(2x – 1)2 iv) x2 – 5x + 6 v)4x2 + 9y2 + z2 + 12xy + 4xz + 6yz vi) x3 – x2y + xy2 – y3 vii) a3 +a2b +ab2 + b3 27. Solve using appropriate formula : i) (2a + 3)(2a – 3) ii) (105)2 iii)(49)2 iv) (536)2 – (136)2 v) if 4x = 72 – 32, then find the value of x. vi) 998 × 1002 28. Simplify : (a + b)3 + (a – b)3 + 6a(a2 – b2). 29. Show that if 2(a2 + b2) = (a + b)2, then a = b. 30. Expand each of the following : - i) (x + 2y)3 ii) (2x – 3y)3 iii) (x2 + 2y)3 31. Evaluate the following using suitable identities : i) (98)3 ii) (101)3 iii) (999)3 32. Show that if (a + b) is not zero, then the equation : a(x – a) = 2ab – b(x – b) has a solution x = a + b. 33. Foctorise each of the following : i) a4 – b4 ii) a4 – 16b4 iii) a2 – (b – c)2 iv) x2 + 7xy + 12y2 v) x2 + 2ax – b2 – 2ab vi) (x2 + x)2 + 4(x2 + x) – 12 vii) 5x2 + 16x + 3. From more study Material JSunil Tutorial |
NCERT Activity Chapter 02 Acid Bases and Salt Class 10 Chemistry Activity 2.1 Indicator Acid Base Red litmus No Change Blue Blue Litmus Red No change Phenolphthalein Colourless Pink Methyl Orange Pink Yellow Indictors are substance which change colour in acidic or basic media. Activity 2.2 There are some substances whose odour changes in in acidic or basic media. These are called olfactory indicators. Like onion vanilla, onion and clove. These changes smell in basic solution. Activity 2.3 Take about 5 mL of dilute sulphuric acid in a test tube and add few pieces of zinc granules to it. => You will observe bubbles of hydrogen gas on the surface of zinc granules. Zn + H2SO4 --> ZnSO4 + H2 => Pass the Hydrogen gas through the soap solution. Bubbles formed in the soap solution as Hydrogen gas it does not get dissolved in it
Comments
Post a Comment